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Abstract : A thorough understanding of turbulent reacting flows is essential to the continued
development of practical combustion systems.  Combustor codes can be validated using data such as
those generated in this study of a vortex interacting with a nonpremixed, opposed-jet hydrogen-air flame.
When experimental results are compared with model predictions, the underlying flowfield must be
matched carefully.  Since the vortex-injection process used in the present experiments can result in many
types of vortices, including multiple vortices, restrictions on the experimental operation of the burner are
required as well as careful vortex characterization.  Vortex-characterization data are acquired using
digital, two-color particle-image velocimetry (PIV), and the hydroxyl (OH) layer produced by the flame
is imaged using planar laser-induced fluorescence (PLIF).  The PIV and OH PLIF measurements are
performed simultaneously.  Good agreement with previous numerical-modeling predictions is obtained
when experiments and computations are performed using similar vortex conditions.
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1. Introduction
Recent predictions from numerical modeling combined with results of experimental measurements have led to
important advances in the understanding of combustion.  Numerous investigations have contributed to these
advances, including a particular type of study in which the interaction of a laminar nonpremixed flame and a vortex
is examined.  The resulting data can be used for a variety of purposes such as identifying fundamental regimes of
vortex-flame interactions (Renard et al., 1999).  Vortical structures play an important role in unsteady and turbulent
combustion (Takahashi et al., 1996; Roquemore and Katta, 1998; Roquemore and Katta, 1999), and experimental
data from studies of these structures can be used to develop models for application to practical combustion devices
such as experimental gas-turbine combustors (Roquemore et al., 1991; Durbin et al., 1996; Katta and Roquemore,
1997; Katta and Roquemore, 1998; Hsu et al., 1999).

In recent numerical calculations, Katta predicted that during the interaction of a nonpremixed hydrogen-air
flame and an isolated vortex, the extinction of the OH layer would occur in an annular pattern (Katta et al., 1998a).
Later experimental results confirmed this computational prediction (Katta et al., 1998a; Fiechtner et al., 1998;
Fiechtner et al., 1999).  Agreement of experimental and computational results relies on careful matching of the
underlying flowfields of the techniques.  Because the vortex-injection process used in the present study can result
in many types of vortices, including multiple vortices, careful vortex characterization is necessary.  This is
accomplished by seeding particles into the flowfield and detecting the scattered light during digital, two-color
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particle-image velocimetry (PIV) measurements.  Digital PIV measurements are made simultaneously with planar
laser-induced fluorescence (PLIF) measurements of the hydroxyl radical (OH), which is formed during combustion
in a nonpremixed, hydrogen-air opposed-jet burner.  Good agreement with previous computational-modeling
predictions is obtained when vortex conditions are matched.

2. Background
The experiments described in this paper concern vortex-flame interactions, and the importance of the vortex-
injection process is emphasized; therefore, a review of vortex-flame studies is presented, followed by a review of
vortex-formation measurements.

2.1  Vortex-flame Experiments
Numerous experimental studies of the interaction dynamics of vortices and flames have been conducted.  For
premixed flame fronts, most measurements have been made using two experimental configurations: V-flames can
be supported behind a wire, or flames can be propagated inside a cylinder.  A variety of vortex-injection methods
can be applied.  In one case, a Karman vortex street was produced using a cylindrical rod in a cross flow of
premixed gases (Hertzberg et al., 1984; Escudie, 1988), and the resulting vortices interacted with a V-flame.
Planar tomographic imaging was used to study the interaction of the vortex street and the flame.  A similar
interaction of a Karman vortex street and a flame was investigated using PLIF imaging of OH (Lee et al., 1993)
and using both OH PLIF and PIV (Nye et al., 1996).  A disadvantage of using the vortex street is the difficulty in
isolating a single vortex.  To replace the vortex street in experiments with V-flames, a means of injecting an
isolated line vortex through a horizontal slot in the wall of a vertical wind tunnel was developed (Samaniego,
1992a).  A year later, schlieren images of the time-dependent vortex-flame interaction along with CH emission data
from the entire V-flame were presented (Samaniego, 1992b).  Paul and co-workers also studied vortex-flame
interactions using the Samaniego burner, initially reporting results of PLIF measurements of OH and CH radicals
(Nguyen and Paul, 1996), with more recent results including images of quantities such as heat release (Najm et al.,
1998; Paul and Najm, 1998).

In a second configuration involving premixed combustion, a flame was ignited at one end of a tube of
premixed gases, and a vortex was injected at the other end of the tube (Jarosinski et al., 1988).  The vortex-flame
interaction was photographed using a mercury-xenon arc lamp and a rotating-drum streak camera with a rotating-
disc shutter.  Recently, Driscoll and co-workers produced an impressive series of papers concerning a similar
vortex-flame facility in which PIV, OH PLIF, or a combination of these imaging techniques was applied (Roberts
and Driscoll, 1991; Roberts et al., 1992; Roberts et al., 1993; Driscoll et al., 1994; Mueller et al., 1995; Mueller et
al., 1996; Mueller et al., 1998; Sinibaldi et al., 1998a; Sinibaldi et al., 1998b).

Nonpremixed flames have also been the subject of experimental study.  Rolon and co-workers (Rolon et al.,
1995; Thevenin et al., 1996; Renard et al., 1998; Thevenin et al., 1998; Renard et al., 1999) developed an apparatus
in which a vortex is injected into a flame supported between the nozzles of an opposed-jet burner.  This geometry
has numerous advantages.  First, a stationary nonpremixed flame can be produced and isolated easily, which is not
possible with the above geometries.  Second, the flame thickness can be varied by changing either the nozzle
velocities or the spacing between the upper- and lower-burner nozzles.  The device has also been extended to the
study of vortices that interact with premixed opposed-jet flames (Renard et al., 1998).  Takagi and co-workers
(Takagi et al., 1996; Yoshida and Takagi, 1998) performed planar Rayleigh-scattering measurements of
temperature in a similar type of opposed-jet burner in which a small jet of fuel or air was injected using a micro-
nozzle with an inner diameter of only 0.25 mm.  Santoro and co-workers modified a vortex counterflow burner to
permit the study of spray flames (Santoro et al., 1999).

In a different class of measurements, Hsu and co-workers modulated the axial velocity of a laminar jet
diffusion flame using a loud speaker to produce vortex-flame interactions (Hsu et al., 1993; Katta et al., 1998b).
Additional studies were performed with this apparatus using a number of techniques including reactive Mie
scattering, PLIF, and digital PIV (Hancock et al., 1996).  In a similar type of study, OH PLIF measurements were
performed in a Wolfhard-Parker slot burner that was forced acoustically by loud speakers on the side walls of the
upstream fuel duct (Mueller and Schefer, 1998).  PLIF imaging of acetone was used as a marker for the fuel.

A facility was developed recently for generating a nonpremixed burning layer that wraps into a vortex ring
(Chen and Dahm, 1998).  The facility has been operated under conditions of both normal gravity and microgravity,
allowing the study of the influence of buoyancy.  In contrast, a facility has been developed in which the vortex is
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ignited just as the fluid begins to exit a tube (You et al., 1998).  The experiments described in the present paper are
based on the counterflow geometry of Rolon and co-workers (Rolon et al., 1995; Thevenin et al., 1996; Renard et
al., 1998; Thevenin et al., 1998; Renard et al., 1999).

2.2 Vortex-production Process
Vortex formation has been the subject of intense study for many years (Magarvey and MacLatchy, 1964; Widnall,
1975; Maxworthy, 1977; Pullin, 1979; Didden, 1979; Glezer, 1988; Glezer and Coles, 1990; Southerland et al.,
1991; Saffman, 1992; Shariff and Leonard, 1992; Nitsche and Krasny, 1994; Nitsche, 1996; Weigand and Gharib,
1997; Fabris and Leipmann, 1997; Heeg and Riley, 1997); thus, a large amount of information is available for
analyzing the results of the present experiments.  The mechanism used to create vortices during the present
experiments relies on a piston/cylinder with stroke length L attached to a nozzle with diameter D.  The maximum
circulation which a vortex ring can attain is reached for a formation number, L/D, of ~ 4; additional trailing vortex
rings form for larger ratios (Gharib et al., 1998).  Use of larger formation numbers results in the formation of a
starting jet (Garside et al., 1943; Rizk, 1958; Abramovich and Solan, 1973; Yaros, 1977; List, 1982; Witze, 1983;
Kuo et al., 1986; Cattolica and Vosen, 1987; Brombacher, 1997; Johari et al., 1997; Hill and Ouellette, 1999).  The
vortex-formation process is illustrated in Fig. 1.  In Frame 1 a slug of fluid begins to exit the tube, while in Frame 2
the vortex begins to form.  After Frame 2 one of two paths is followed, depending on the motion of the piston.  If
the piston is stopped after a comparatively small value of the formation number (Path A), the vortex pinches off as
it travels upward, as illustrated in Frames 3A and 4A of Fig. 1.  This case has been reported numerous times in the
literature (Magarvey and MacLatchy, 1964; Widnall, 1975; Maxworthy, 1977; Pullin, 1979; Didden, 1979; Glezer,
1988; Glezer and Coles, 1990; Southerland et al., 1991; Saffman, 1992; Shariff and Leonard, 1992; Nitsche and
Krasny, 1994; Nitsche, 1996; Weigand and Gharib, 1997; Fabris and Leipmann, 1997; Heeg and Riley, 1997).  The
trailing fluid is entrained into the vortex during the pinch-off process (Gharib et al., 1998), resulting in a "bubble"
defined by leading and trailing stagnation points (James and Mandia, 1996).  The pinch-off process can require up
to two formation numbers for completion (Gharib et al., 1998).
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Fig. 1.  Schematic diagram of vortex-formation processes.



If the piston motion is allowed to continue (Path B), the developing vortex travels initially above a column
of fluid, as shown in Frame 3B.  If the piston motion continues, multiple vortices can be produced from the tube, as
illustrated in Frame 4B of Fig. 1 (Auerbach, 1991; Gharib et al., 1998).  The trailing vortex may eventually
overtake the leading vortex, resulting in the interaction of two coaxial vortices.  Additional vortices can also
interact with the leading vortex.  Interactions of multiple coaxial vortices have received considerable attention in
the literature (Oshima et al., 1975; Yamada and Matsui, 1978; Maxworthy, 1979; Yamada and Matsui, 1979a;
Yamada and Matsui, 1979b; Oshima et al., 1986; Shariff and Leonard, 1992; Riley, 1993; Weidman and Riley,
1993; Leung et al., 1996; Konstantinov, 1997; Lim, 1997; Leung et al., 1997). 

3. Apparatus and Procedure

3.1  Burner Facility
A photograph of the opposed-jet burner can be found in the literature (Gord et al., 1998; Renard et al., 1999;
Fiechtner et al., 1999).  The flame is supported between upper and lower nozzles separated by 40 mm, each with an
exit diameter of 25 mm.  The fuel consists of hydrogen diluted with nitrogen and flows from the upper nozzle.  Air
flows from the lower nozzle.  Unique to this type of apparatus is a tube with 5-mm inner diameter that is installed
concentrically within the lower nozzle.  This tube is attached to a cylinder containing a piston that, in turn, is
attached to an actuator.  When an appropriate current is delivered to the actuator, a solenoid forces the piston
upward abruptly, resulting in the emergence of a vortex from the tube.  In the present study, vortices are generated
using a 10-ms piston risetime.

Studies comparing vortex production via nozzles and orifices have revealed subtle differences in parameters
such as vortex size (James and Mandia, 1996); this must be considered when comparing the results of the present
study with those obtained during experiments in which vortices are generated using orifices (Roberts and Driscoll,
1991; Roberts et al., 1992; Roberts et al., 1993).  When vortices are characterized fully, such concerns are
minimized.  The volume that a vortex can contain based on the diameter of our nozzle is ~ 0.4 cm3 (Gharib et al.,
1998).  Our vortex generator can sweep a maximum volume of ~ 3 cm3, for a maximum attainable formation
number of ~ 30.  The condition illustrated in Frame 3B of Fig. 1 was chosen in our experiments to match the
vortices used in the computations of Katta (Roquemore and Katta, 1998; Roquemore and Katta, 1999; Katta and
Roquemore, 1999).  An example of such a vortex is shown in Fig. 2, where the numerically computed vortex is
observed to travel above a column of fluid.  Numerical routines that rely on an artificially created vortex pair by
specifying the vortex field (Poinsot et al., 1987; Rutland and Ferziger, 1991; Ashurst, 1993) may not model our
experimental conditions properly.  It is also possible for vortices that are initially laminar to become unsteady and
turbulent (Widnall, 1975; Glezer and Coles, 1990; Shariff and Leonard, 1992; You et al., 1998) – conditions that
are avoided in the present study.  In addition, if the piston/cylinder is not aligned and lubricated properly, an
undesired turbulent puff of fluid may exit the tube.
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Fig. 2.  Example of numerically computed vortex interacting with laminar flame.



The laminar vortices travel upward within the surrounding oxidizer flow.  A flow of air is supplied to the
vortex tube such that in the absence of a vortex, the exit velocity matches the velocity of the air from the
surrounding nozzle.  To minimize the impact of room-air disturbances, upper and lower guard flows of nitrogen are
supported through outer nozzles that are concentric with the respective upper and lower inner nozzles supporting
the flame.  The hydrogen, nitrogen-diluent, and oxidizer-air flows are furnished by mass-flow controllers with
respective full-scale ranges of 20, 20, and 30 l/min.  A continuous flow of air is provided to the vortex tube by a 5-
l/min controller, while the guard flows for the upper and lower guard (outer) nozzles are furnished by two 50-l/min
mass-flow controllers.  The flow rates of the controllers are accurate to ±1% of the full-scale range. 

Hollow ceramic seed particles with an approximate mean diameter of 2.4 µm are introduced into the burner
flows when digital PIV measurements of the vortex velocity are performed.  Three particle seeders are installed –
one placed after the air mass-flow controller, another after the vortex-air mass flow controller, and a third after the
junction where the hydrogen and nitrogen gases are mixed. 

3.2  Laser Diagnostics
The PLIF system includes a frequency-doubled, Q-switched Nd:YAG laser that is used to pump a dye laser which,
in turn, is frequency doubled.  The UV radiation is directed through a telescope that is adjusted to produce a light
sheet with a height that matches as nearly as possible the 40-mm burner separation.  The resulting beam thickness
is ~ 300 µm, which corresponds to the full width (defined as the distance between the locations of the 25% peak-
intensity points).

Hydroxyl radicals absorb the laser radiation at 281.3414 nm via the R1(8) transition of the (1,0) band in the
A-X system.  Fluorescence from the A-X (1,1) and (0,0) bands is detected at right angles through WG-295 and
UG-11 colored-glass filters using a 105-mm-focal-length f/4.5 UV lens.  The resulting light is recorded on an
intensified CCD camera with an intensifier gate width of 100 ns.  CCD pixels are binned in 2 × 2 groups, resulting
in an effective array size of 288 × 192 pixels with an imaged area of 25.6 × 38.4 mm2.  The bottom of the image
rests immediately above the surface of the lower nozzle.  A color table is used with a maximum value set to 95% of
the maximum signal for all images taken at a given flame condition.  The low-signal color is assigned by
calculating the background noise and selecting a minimum value that is two standard deviations above this level. 

Measurements of the velocity field are carried out using digital, two-color PIV (Gogineni et al., 1998a;
Gogineni et al., 1998b).  Here, a color digital CCD with an array of 3060 × 2036 pixels is used.  A magnification of
78,368 pixels/m is employed, resulting in an imaged area of 26.0 × 39.0 mm2.  The color CCD camera and the
intensified CCD array are aligned using a transparent mask printed with a graduated scale.  Two lasers are used;
one PIV light sheet is produced by doubling the output of a Q-switched Nd:YAG laser (30 mJ/pulse at the test
section).  The remainder of this beam is used to pump the dye laser that is frequency doubled to excite OH
fluorescence.  The second PIV light sheet is produced by pumping a dye laser (employing DCM laser dye) with a
second frequency-doubled, Q-switched Nd:YAG laser, resulting in laser radiation at 640 nm (40 mJ/pulse at the
test section).  The thickness of both the red and green light sheets is set to ~ 700 µm at the probe region.  A digital
delay generator is used to drive the timing of the two lasers such that the red pulses are delayed precisely with
respect to the green ones.  Velocity vectors are calculated using correlation software (Gogineni et al., 1998a).  A
correlation area of 128 × 128 pixels is used in the calculation, corresponding to a correlation area of 0.269 cm2 and
a spatial resolution of 1.6 mm.  Digital PIV measurements are applied to obtain the propagation velocity of the
primary vortex, and this correlation area is acceptable for such purposes. 

3.3 Synchronization and Timing
For the present experiments, precise synchronization of several experimental events is required, including vortex
generation and propagation, production of laser pulses, and activation of the camera shutter or intensifier.  As
described in previous papers (Fiechtner et al., 1998; Gord et al., 1998; Fiechtner et al., 1999), lasers, cameras, and
the vortex injector are synchronized electronically with an effective temporal jitter of ~10 ns.  This electronic jitter
is much smaller than the fastest event probed to date, which occurs on an ~ 10-µs time scale.  Temporally resolved
data are acquired utilizing the following phase-locked timing sequence:  1) an image is recorded, 2) the delay
between vortex production and laser/camera events is adjusted, and 3) another vortex is initiated and a second
image recorded.
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This process is repeated to acquire numerous images at increasing delays, and an animation is created by
assembling the individual images in temporal order.  The burner facility results in highly reproducible events, even
at delays as short as 10 µs.

4. Results and Discussion
Simultaneous and superimposed images of the OH PLIF signal and the PIV velocity field are shown in Fig. 3.  The
annular break of the OH layer corresponds closely to that predicted during previous numerical computations (Katta
et al., 1998a).
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Fig. 3.  OH PLIF image and superimposed velocity field demonstrating annular extinction of OH layer.  OH

PLIF image and digital PIV data are acquired simultaneously.  Vortex propagates upward at velocity of 4.2

m/s.

Fig. 4.  Vortex injected into cold flow.  Vortex propagates upward at velocity of 1.5 m/s.



The scattering image of Fig. 4 was obtained when the vortex-tube flow was seeded with a slightly higher
particle density than that produced by the upper and lower burners.  As shown, the "mushroom" vortex advances
ahead of a column of fluid because the piston continues to push fluid from the vortex nozzle.  The scattering image
of Fig. 4 was acquired in a cold flow.  If the flame is ignited, a vortex such as that depicted in the scattering image
of Fig. 5 is obtained.  Here, the flame causes the vortex to take on a shape much like that observed in the numerical
simulation of Fig. 2, which also corresponds to a reacting flow.  However, the vortex images of Figs. 4 and 5 have
additional wing-like structure about their stems.  This structure results from the pattern formed by the seed particles
that exit the vortex tube prior to injection of a vortex, as demonstrated in the scattering image in the upper half of
Fig. 6.  The velocity vectors superimposed on the OH PLIF image in the lower half of Fig. 6 demonstrate that in 
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Fig. 5.  Vortex injected into opposed-jet flame.  Vortex propagates upward at velocity of 8.3 m/s.

Fig. 6.  Simultaneous scattering (upper) and OH PLIF (lower) images.  Superimposed vectors demonstrate

that stagnation point is located slightly above location of peak OH signal.



the absence of a vortex, the stagnation plane is located slightly above the position of the peak OH signal.
The sequence of four scattering images in Fig. 7 demonstrates the temporal development of an overfilled

leading vortex (Gharib et al., 1998; Chen and Dahm, 1998), in which a second and a third vortex are observed.  In
addition, the high temperatures caused by combustion produce a low-density region that is identified by a smaller
scattering signal around the vortices and the stem.  This rich structure is repeatable and, therefore, may provide
precisely controlled regions of flame curvature and additional regions in which multiple flame layers can interact
(Petrov and Ghoniem, 1998).  The rainbow appearance of the images results from variations in the irradiance of the
red and green lasers across the respective light sheets; these variations were less pronounced when the images of
Figs. 4-6 were recorded.  Variations in image brightness are caused by different particle seed levels (for each of the
three seeders) from image to image.

5. Conclusions and Future Research
The apparatus of Rolon and co-workers (Rolon et al., 1995; Thevenin et al., 1996; Renard et al., 1998; Thevenin et
al., 1998; Renard et al., 1999) has been implemented to study the interaction of a vortex and a flame.  Digital, two-
color PIV has been applied to characterize the vortices injected into the opposed-jet flow.  PLIF images of OH
have been used to observe the dynamics of the interaction of the vortex and the flame.  An annular break in the OH
layer has been observed experimentally, in excellent agreement with prior predictions from numerical
computations (Katta et al., 1998a).  This agreement results from careful experimental characterization of the
vortical flowfield, with the chosen conditions matching those of the corresponding vortex-injection process in the
numerical computations.

The present discussion of multiple-vortex formation is limited to a preliminary example.  Indeed, most of
our previous studies have been limited to the interaction of an isolated vortex and a flame (Fiechtner et al., 1998;
Gord et al., 1998; Katta et al., 1998a; Fiechtner et al., 1999).  Further investigations of multiple-vortex formation
dynamics are being performed to address a wider range of formation numbers.  Vortex-vortex interactions are 
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Fig. 7.  Multiple-vortex injection observed using temporal sequence of scattering images, with time

increasing from left to right, top to bottom:  Relative to the first image, subsequent images are delayed by

1, 2.5, and 3.5 ms.  Primary vortex in the first image propagates upward at velocity of 9.1 m/s.



being studied in greater detail, and regions suitable for studying flame-flame interactions are being probed.  These
studies are being accomplished simultaneously with numerical modeling.
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